52. Alavi, F., and Ciftci, O. (2024). Green and single-step simultaneous composite starch aerogel formation-high bioavailability curcumin particle formation. International Journal of Biological Macromolecules, In press.

farhad_GA.jpeg

51. Sezer Okur, P., Ciftci, D., and Ciftci, O. (2023). Formation of hollow solid microparticles from natural waxes using supercritical carbon dioxide. Journal of the American Oil Chemists' Society, In press.

50. Yang, J., Ciftci, D., and Ciftci, O. (2023). Fortification of milk with omega-3 using novel bioactive-carrier hollow solid lipid micro- and nanoparticles for improved omega-3 stability and bioaccessibility. ACS Food Science and Technology, In press.

milk_GA.jpg

49. Hatami, T., Yang, J., Meireles, M.A.A. and Ciftci, O.N. (2023). Sensitivity analysis of the formation of hollow solid lipid micro- and nanoparticles from CO2-saturated solution of fully hydrogenated soybean oil. Powder Technology, In press.

graphicalabstract_FHSOsensitivity

48. Hatami, T. and Ciftci, O.N. (2023). Techno-economic sensitivity assessment for supercritical CO2 extraction of lycopene from tomato processing waste. Journal of CO2 Utilization, In press.

Hatami_graphicalabtract

47. Sezer Okur, P. and Ciftci, O.N. (2023). Value-added Green Processing of Tomato Waste to Obtain a Stable Free-Flowing Powder Lycopene Formulation using Supercritical Fluid Technology. Food and Bioprocess Technology, In press.

46. Ubeyitogullari, A. and Ciftci, O.N. (2023). A green approach to obtaining concentrated lipophilic bioactives from oil-rich extracts via biocatalytic alcoholysis in supercritical carbon dioxide. Journal of CO2 Utilization, In press.

Fco2 utilization

45. Nolasco, E., Baraka, E. Yang, J., Ciftci, O.N., and Majumder, K. (2023). Bio-accessibility and Antioxidant Activity of Commercial Standard and Enriched Whole Egg Compounds Influenced by Production and Domestic Cooking Practices. Food Chemistry, In press.

44. Hatami, T. and Ciftci, O.N. (2023).A step-by-step technoeconomic analysis of supercritical carbon dioxide extraction of lycopene from tomato processing waste. Journal of Food Engineering, 357, 111639.

techno economic

43. Alavi, F. and Ciftci, O. N. (2023). Effect of starch type and chitosan supplementation on physicochemical properties, morphology, and oil structuring capacity of composite starch bioaerogels. Food Hydrocolloids, In press.

42. Alavi, F. and Ciftci, O. N. (2022). Purification and fractionation of bioactive peptides through membrane filtration: a critical and application review. Trends in Food Science & Technology, In press.

41. Alavi, F. and Ciftci, O. N. (2022). Superlight microporous aerogels produced from cold-set egg white protein hydrogels show superior oil structuring capacity. Food Hydrocolloids, In press.

40. Faucher, M., Thibodeau, J., Ciftci, O. N., Gaaloul, S., and Bazinet, L. (2022). Phospholipid recovery from sweet whey by combination of electrodialytic processes and understanding of specific mechanisms involved. Chemical Engineering Journal, In press.

39. Alavi, F. and Ciftci, O. N. (2022). Developing dual nano/macroporous starch bioaerogels via emulsion templating and supercritical carbon dioxide drying. Carbohydrate Polymers, In press.

Farhadone

38. Ubeyitogullari, A. and Ciftci, O. N. (2022). Enhancing the bioaccessibility of lycopene from tomato processing byproducts via supercritical carbon dioxide extraction. Current Research in Food Science, 5, 553-563.

pubali

37. Sperotto, F., Yang, J., Isom, L., Weller, C., and Ciftci, O. N. (2022). Supercritical carbon dioxide extraction, purification, and characterization of wax from sorghum and sorghum by-products as an alternative natural wax. Journal of the American Oil Chemists' Society, 1-9.

36. Dias, A. L. S., Ubeyitogullari, A., Hatami, T., Martínez, J., and Ciftci, O. N. (2021). Continuous production of isoamyl acetate from fusel oil under supercritical CO2: A mass transfer approach. Chemical Engineering Research and Design, 176, 23-33.

PUB36

35. Faucher, M., Perreault, V., Ciftci, O. N., Gaaloul, S., and Bazinet, L. (2021). Phospholipid recovery from sweet whey and whey protein concentrate: Use of electrodialysis with bipolar membrane combined with a dilution factor as an ecoefficient method. Future Foods, 4, 100052.

28pub

34. Nolasco, E., Yang, J., Ciftci, O., Vu, D. C., Alvarez, S., Purdum, S., and Majumder, K. (2021). Evaluating the effect of cooking and gastrointestinal digestion in modulating the bio-accessibility of different bioactive compounds of eggs. Food Chemistry, 344, 128623.

33. Liu, L., and Ciftci, O. N. (2021). Effects of high oil compositions and printing parameters on food paste properties and printability in a 3D printing food processing model.  Journal of Food Engineering, 288, 110135.

32. Yang, J., and Ciftci, O. N. (2020). In vitro bioaccessibility of fish oil-loaded hollow solid lipid micro- and nanoparticles.  Food & Function, 11, 8637-8647.

28pub

31. Xie, L., Ciftci, O., and Zhang, Y. (2020). Encapsulation of astaxanthin-enriched camelina oil extract in ovalbumin/gum arabic stabilized emulsion with/without crosslinking by tannic acid. ES Food & Agroforestry, 1, 77-48.

28pub

30. Baião Dias, A. L., Hatami, T., Martínez, J., and Ciftci, O. N. (2020). Biocatalytic production of isoamyl acetate from fusel oil in supercritical CO2.  Journal of Supercritical Fluids, 164, 104917.

28pub

29. Naz, S., Shabbir, M. A., Aadil, R. M., Khan, M. R., Ciftci, O. N., Sameen A., Yasmin, I., Hayee, A., and Maqsood, M. (2020). Effect of polymer and polymer blends on encapsulation efficiency of spray-dried microencapsulated flaxseed oil. International Food Research Journal, 27, 78-87.

28. Ubeyitogullari, A., and Ciftci, O. N. (2020). Fabrication of bioaerogels from camelina seed mucilage for food applications. Food Hydrocolloids, 102, 105597.

28pub

27. Konda, A. R., Nazarenus, T., Nguyen, H., Yang, J., Gelli, M., Swenson, S., Shipp, J., Schmidt, M., Cahoon, R., Ciftci, O., Zhang, C., Clemente, T., and Cahoon, E. (2020). Metabolic engineering of soybean seeds for enhanced vitamin E tocochromanol content and effects on oil antioxidant properties in polyunsaturated fatty acid-rich germplasm. Metabolic Engineering, 57, 63-73.

26. Yang, J., and Ciftci, O. N. (2020). Effect of chemical structure of solid lipid matrix on its melting behavior and volumetric expansion in pressurized carbon dioxide. Journal of the American Oil Chemists' Society, 97, 105-113.

25. Liu, L., Ramirez. I. S. A., Yang, J., and Ciftci, O. N. (2020). Evaluation of oil-gelling properties and crystallization behavior of sorghum wax in fish oil. Food Chemistry, 309, 125567.

24. Ubeyitogullari, A., and Ciftci, O. N. (2019). A novel and green nanoparticle formation approach to forming low-crystallinity curcumin nanoparticles to improve curcumin’s bioaccessibility. Scientific Reports, 9, 19112.

23. Ubeyitogullari, A., Moreau, R., Rose, D., and Ciftci, O. N. (2019).  In vitro bioaccessibility of low-crystallinity phytosterol nanoparticles generated using nanoporous starch bioaerogels. Journal of Food Science, 84, 1812-1819.

Bioaccessibility graph

22. Ubeyitogullari, A., and Ciftci, O. N. (2019). In vitro bioaccessibility of novel low-crystallinity phytosterol nanoparticles in non-fat and regular-fat foods. Food Research International, 123, 27-35.

Low crystallinity phytosterol graphic

21. Vogel, P., Bayon de Noyer, S., Park, H., Nguyen, H., Hou, L., Changa, T., Khang, H., Ciftci, O.N., Wang, T., Cahoon, E., Clemente, T. (2019). Expression of the Arabidopsis WRINKLED 1 transcription factor leads to higher accumulation of palmitate in soybean seed. Plant Biotechnology Journal, 17, 1369-1379.

20. Gudeman, J., Yang, J., and Ciftci, O. N. (2019). Formation of low density and free-flowing hollow microparticles from butter and fractionated palm oil. Journal of the American Oil Chemists' Society, 96, 147-158.

19. Xie, L., Cahoon, E., Zhang, Y., and Ciftci, O.N. (2019). Extraction of astaxanthin from engineered Camelina sativa seed using ethanol-modified supercritical carbon dioxide. Journal of Supercritical Fluids, 143, 171-178.

camelina seed to oil equation

18. Hatami, T., Meireles, M.A.A, and Ciftci, O.N. (2019). Supercritical carbon dioxide extraction of lycopene from tomato processing by-products: Mathematical modeling and optimization. Journal of Food Engineering, 241, 18-25.


tomato seed and peel modeling

17. Ubeyitogullari, A., Moreau, R., Rose, D., Zhang, J., and Ciftci, O.N. (2019). Enhancing the bioaccessibility of phytosterols using nanoporous corn and wheat starch bioaerogels. European Journal of Lipid Science and Technology, 121, 1700229.

bioaccessibility graphic

16. Ubeyitogullari, A., Brahma, S., Rose, D., and Ciftci, O.N. (2018). In vitro digestibility of nanoporous wheat starch aerogels. Journal of Agricultural and Food Chemistry, 66, 9490-9497.

digestibility graphic

15. Ciftci, O.N., Cahyadi, J., Guigard, S.E., and Saldaña, M.D. A. (2018) Optimization of artemisinin extraction from Artemisia annua L. with supercritical carbon dioxide+ethanol using response surface methodology. Electrophoresis, 39, 1926-1933.

14. Vallecilla-Yepez, L. and Ciftci, O.N. (2018). Increasing cis-lycopene content of the oleoresin from tomato processing byproducts using supercritical carbon dioxide. LWT - Food Science and Technology, 95, 354-360.

13. Belayneh, H., Wehling, R., Zhang, Y., and Ciftci, O.N. (2017). Development of omega-3-rich Camelina sativa seed oil emulsions. Food Science & Nutrition, 00, 1-10.

12. Xie, L., Wehling, R.L., Ciftci, O.N., and Zhang, Y. (2017). Formation of complexes between tannic acid with bovine serum albumin, egg ovalbumin and bovine beta-lactoglobulin. Food Research International, 102, 195-202.

complex formation

11. Belayneh, H., Wehling, R., Cahoon, E., and Ciftci, O.N. (2017). Lipid composition and emulsifying properties of Camelina sativa seed lecithin. Food Chemistry, 242, 139-146.

10. Belayneh, H.D., Wehling, R.L., Reddy, A.K., Cahoon, E.B., and Ciftci, O.N. (2017). Ethanol-modified supercritical carbon dioxide extraction of the bioactive lipid components of Camelina sativa seed. Journal of the American Oil Chemists’ Society, 94, 855-865.

9. Ciftci, D., Ubeyitogullari, A., Razera Huerta, R., Ciftci, O.N., Flores, R. and Saldaña, M.D.A. (2017). Lupin cellulose nanofiber aerogel preparation by supercritical CO2 drying and freeze drying. Journal of Supercritical Fluids, 127, 137-145.

8. Ubeyitogullari, A., and Ciftci, O. N. (2017). Generating phytosterol nanoparticles in nanoporous bioaerogels via supercritical carbon dioxide impregnation: Effect of impregnation conditions. Journal of Food Engineering, 207, 99-107.

Pressure vs temperature

7. Yang, J., and Ciftci, O. N. (2017). Encapsulation of fish oil into hollow solid lipid micro- and nanoparticles using carbon dioxide. Food Chemistry, 231, 105-113.

6. Belayneh, H.D., Wehling R.L., Cahoon E. and Ciftci, O. N. (2017). Effect of extraction method on the oxidative stability of camelina seed oil studied by differential scanning calorimetry. Journal of Food Science, 82, 632-637.

5. Ubeyitogullari, A., and Ciftci, O. N. (2016). Phytosterol nanoparticles with reduced crystallinity generated using nanoporous starch aerogels. RSC Advances, 6, 108319-108327.
intensity vs degree

4. Yang, J., and Ciftci, O. N. (2016). Development of free-flowing peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles via atomization with carbon dioxide. Food Research International, 87, 83-91.
                                   soybean and peppermint oil equation

3. Ubeyitogullari, A., and Ciftci, O. N. (2016). Formation of nanoporous aerogels from wheat starch. Carbohydrate Polymers, 147, 125-132.                         

nanoporous aerogel formation
2. Yang, J., and Ciftci, O. N. (2016). Formation of hollow solid lipid micro- and nanoparticles using supercritical carbon dioxide. Food and Bioproducts Processing, 98, 151-160.               soybean oil to micropartical equation
1. Belayneh, H. D., Wehling, R. L., Cahoon, E., and Ciftci, O. N. (2015). Extraction of omega-3-rich oil from Camelina sativa seed using supercritical carbon dioxide. Journal of Supercritical Fluids, 104, 153-159.                               extraction of omega-3 oil